Reinforcement Learning and Double Auctions

Performance, Strategies, and Market Design

Pranjal Rawat December 26, 2023

Georgetown University

Introduction

I conduct experiments with reinforcement learning (RL) in dynamic double auctions (DA):

- Reinforcement learning can outperform simple trading rules.
- Reinforcer competition is efficient and prices are stable.
- Prices do not show quick reversals or corrections.
- There is no fight to hold the current bid (ask).

However,

- Reinforcers can learn to collude, but can also be vulnerable to it.
- Increasing disclosures can, paradoxically, worsen market outcomes.

- Motivation:
 - Breakthrough in learning algorithms for dynamic problems, especially with high dimensional states and granular action spaces.
 - Rise of high frequency, computerized markets driven by algorithms not humans; in sectors like finance, advertising, energy, e-commerce.
- Questions:
 - How well can reinforcement learning perform in double auctions?
 - How do we design auctions when traders use reinforcement learning?
- Directions:
 - Experimental study of the Santa Fe double auction tournament.
 - Monte Carlos with Q-learning and one-sided auctions.
 - Study of Q-learning's replicator dynamic and mean field game.

Experiments with discrete or continuous double auctions:

Period	Authors	Research Focus
1960-1990	Smith, Williams, Porter	Human BehaviourEfficiency
1980-2010	Easley, Ledyard, Gode, Sunder, Rust, Friedman, Dickhaut, Gerstaud, Cliff, Tesuaro, Das	StrategiesPerformancePrice Formation
2000-2025	Andrews, Prager, Wellman, Hu, Tesfatsion, Chen, Tai	Learning and EvolutionEvolutionary Stability

Theory: Chatterjee-Samuleson (1983), Myerson-Satterthwaite (1983), Wilson (1987), Satterthwaite-Williams (1989).

Synchronized Double Auction

Santa Fe Discrete DA: (Rust, Palmer, Friedman 1992/1993).

 $\mathsf{Round} \Rightarrow \mathsf{Period} \Rightarrow \mathsf{Step}$

- Round: Draw Token Values / Costs
- Period: Replenish Tokens
- Trading Step:
 - Bid and Ask
 - Buy and Sell
 - Price: (Bid + Ask)/2
 - Seller Reward: Price TokenCost
 - Buyer Reward: TokenValue Price

Game Parameters: nRounds, nPeriods, nSteps, nTokens, nBuyers, nSellers

Tokens values (costs) are randomly generated for buyers (sellers).

Gives us market demand and supply, and market clearing prices.

To benchmark reinforcement learning performance, I use the following trading strategies as opponents:

- Zero-Intelligence Constrainted (ZIC) bids randomly while respecting a budget. (Gode and Sunder 1993)
- Easley-Ledyard (EL) human-like bluffing at first, then adjusts profit margin according to performance. (Easley and Ledyard 1983)
- Zero-Intelligence Plus (ZIP) bids randomly in the range of an adjustable profit margin. (Cliff and Bruten 1997)
- Gjerstad-Dickhaut (GD) forecasts winning bids and bids if profit is maximized. (Gjerstad and Dickhaut 1998)
- Kaplan-Ringouette (KR) does not bid until the bid-ask gap closes, then jumps in and steals the deal. (Rust, Palmer, Friedman 1992/1993)

Reinforcement Learning

Variables	Functions
State: $s \in \mathbb{R}^N$	Round: $\tau = (s_0, a_1, r_1,, a_T, r_T, s_T)$
Action ¹ : $a \in [-1, 1]$	Policy: $\pi_{\theta}(a s) = \mathbb{P}(a_t = a s_t = s; \theta)$
Reward: $r \in \mathbb{R}$	Return: $G(\tau) = \sum_{t=0}^{T} \gamma^t r_t$
Discounting: $\gamma \in (0, 1)$	Exp. Return: $J^{\pi} = E_{\tau \sim \pi}[G(\tau)]$

¹Are linked to bids (asks) by normalization frac = (a + 1)/2bid = bid_{min} frac + bid_{max}(1 - frac) Policies are parametrized through neural networks: $a_t \sim \mathbb{N}(\mu(s_t; \theta), \sigma)$

This permits continuous stochastic actions and high dimensional states.

REINFORCE is a popular policy gradient algorithm. (Williams 1992)

- **Objective**: Improve policy π_{θ} .
- While not converged, do:
 - Create dataset of rounds $\mathbb D$ using π_{θ}
 - Compute return: $G(\tau)$ for τ in $\mathbb D$
 - Backpropagation: $\frac{d\mu(s_t;\theta)}{d\theta}$
 - Compute log-probability gradient: $\frac{d \log(\pi_{\theta}(a_t|s_t))}{d\theta}$
 - Compute policy gradient:

$$\frac{dJ(\theta)}{d\theta} = |\mathbb{D}|^{-1} \sum_{\mathbb{D}} [\sum_{t=0}^{T-1} \frac{d\log \pi_{\theta}(a_t|s_t)}{d\theta} G(\tau)]$$

• Update policy parameters: $\theta \leftarrow \theta + \alpha \frac{dJ(\theta)}{d\theta}$

Experiments

Experimental Design

A standard series of experiments:

Single Agent RL:

- A1: Baseline
- A2: vs Particular Trading Strategy

Multi-Agent RL (Main):

- B1: Baseline
- B2: Inelastic Supply
- B3: Few Buyers
- B4: Single Token Only
- B5: Non-Random Tokens
- B6: High Discount Factor
- B7: Reduced Disclosures
- B8: Zero Disclosures
- **B9:** Conditional Disclosures
- B10: Second-Price DA
- B11: NYSE Rule
- B12: Offer Fees
- B13: Reserve Prices

Performance is measured across Rounds, not Periods or Steps.

Individual Performance

- Avg. Profit in last 100 rounds
- Std. Profit in last 100 rounds
- Speed of Learning

Market Performance

- Efficiency: fraction of total possible surplus obtained.
- Price Dispersion around Market Clearing Prices
- Speed of Convergence of Prices to Clearing Levels

These parameters stay fixed in all experiments.

- nRounds: 5,000
- nPeriods: 1
- *nSteps*: 16
- nTokens: 4
- nBuyers: 4
- nSellers: 4

Token values are drawn from a fixed distribution (normal).

Experiment I - Single Agent RL

Buyer 1 and Seller 1 are Reinforcers, rest are ZIC. **There are no public disclosures**. We look at average profit over 100 rounds.

The reinforcers, with minimal information, outsmart the ZIC agents.

Experiment I - Single Agent RL

Prices are volatile but neither side seems to enjoy market power.

Unlike ZIC agents, reinforcers are able to bid close to prices.

Experiment II - Multi-Agent RL (No Disclosure)

All agents are reinforcers, there are no public disclosures.

Prices are not volatile, and efficiency is very high - but there is noticeable buyer power. Offers are also closer together.

Experiment III - Multi-Agent RL (Full Disclosure)

All agents are reinforcers, there is full public disclosure.

Prices continue to be less volatile and efficiency remains high, but buyer power is pronounced. Red (Bids), Blue (Asks), Black (Prices).

Summary of Experimental Results

Criterion	Humans Only ²	ZIC Only	Single-RL (1B,1S)	Multi-RL (No Disc)	Multi-RL (Full Disc)
Efficiency as % of realized vs possible	Higher than ZIC	98.7 (0.02)	98.6 (0.02)	99.4 (0.01)	0.99 (0.06)
Buyer Efficiency as % of realized vs possible	Close to 100%.	1.03 (0.15)	1.03 (0.12)	1.05 (0.12)	1.07 (0.15)
Mean Absolute Deviation of Prices from Clearing Levels	Lower than ZIC	4.63 (0.96)	4.51 (0.91)	1.53 (0.56)	2.28 (0.99)
Price volatility in Std Dev	Lower than ZIC	5.41 (0.98)	5.11 (0.89)	1.99 (0.99)	2.15 (0.65)
1st order Auto correlation in Prices	Close to ZIC (-0.5 to -0.25)	-0.04 (0.24)	-0.03 (0.25)	+0.09 (0.29)	+0.019 (0.32)
Avg. % Current Bid Handovers	Higher than ZIC (nearer to 100%)	72%	67%	60%	64%

²Gode and Sunder 1993, Cason and Friedman 1996.

I study reinforcement learning (RL) in dynamic double auctions (DA):

- Reinforcement learning can outperform simple trading rules.
- Reinforcer competition is efficient and prices are stable.
- Prices do not show quick reversals or corrections.
- There is no fight to hold the current bid (ask).

However,

- Reinforcers can learn to collude, but can also be vulnerable to it.
- Increasing disclosures can, paradoxically, worsen market outcomes.

- Conduct the full experiment.
- Ensure valid inference.
- Find which disclosures improve outcomes.
- Test reinforcers against humans.

Appendix

- What is the economic motivation?
 - To study the effect of information disclosures on market outcomes when traders use reinforcement learning.
- Why not use a theoretical approach?
 - Because attempts to reduce reinforcement learning to a differential equation have only been done for a single state (Banachio et al, Asker-Pakes).
 - No general characterization of Bayesian Nash Equilibria for the dynamic double auction. Wilson (1987) provides a single example, but that is rejected by human data (Cason & Friedman 1996).
- Is this a computer science project?
 - No, it's a computational experiment. Any computer science is confined to the agent's learning process.

FAQ-II

- Why should we care about this research?
 - It demonstrates the possibility of algorithmic collusion even in a market widely considered to be highly efficient.
 - It offers some policy advise on market design which the current theoretical approach cannot address.
- How generalizable are these results?
 - I use a very standardized double auction setup and a classic reinforcement learning algorithm; so this study generalizes as well as most papers in this field.
 - I collect data over multiple trials to ensure valid inference.
- Can experiments have a wider appeal than theorem proving?
 - The famed efficiency of the double auction was establised in experiments such as Smith (1962), Gode-Sunder (1993). In contrast, theoretical analysis of the double auction highlights inefficiencies (e.g. Myserson-Satterthwaite 1983).

References I (Experimental)

- Chen, S.-H., & Tai, C.-C. (2010). The Agent-Based Double Auction Markets: 15 Years On. World Congress on Social Simulation.
- Cason, T. N., & Friedman, D. (1996). Price formation in double auction markets. Journal of Economic Dynamics and Control.
- De Luca, M., & Cliff, D. (2011). Agent-Human Interactions in the Continuous Double Auction, Redux - Using the OpEx Lab-in-a-Box to explore ZIP and GDX. International Conference on Agents and Artificial Intelligence.
- Erev, I., & Roth, A. E. (1998). Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria. The American Economic Review.
- Friedman, D. (2018). The Double Auction Market Institution: A Survey.
- Gjerstad, S., & Dickhaut, J. (2001). Price Formation in Double Auctions. Lecture Notes in Computer Science.

References II (Experimental)

- Holt, C. A., & Holt, C. A. (2021). An experimental study of competitive market behavior (by Vernon L. Smith). The Art of Experimental Economics.
- Hu, J., & Wellman, M. P. (1998). Online learning about other agents in a dynamic multiagent system. International Conference on Autonomous Agents.
- Nicolaisen, J., Petrov, V., & Tesfatsion, L. (2000). Market Power and Efficiency in a Computational Electricity Market with Discriminatory Double-Auction Pricing. Computational Economics.
- Rust, J., Miller, J. H., & Palmer, R. G. (2018). Behavior of Trading Automata in a Computerized Double Auction Market. Lecture Notes in Computer Science.
- Tesauro, G., & Bredin, J. (2002). Strategic sequential bidding in auctions using dynamic programming. Adaptive Agents and Multi-Agent Systems.
- Tesauro, G., & Das, R. (2001). High-performance bidding agents for the continuous double auction. ACM Conference on Economics and Computation.

References III (Theoretical)

- Chatterjee, K., & Samuelson, W. (1983). Bargaining under Incomplete Information. Operations Research, vol. 31, issue 5, 835-851.
- Myerson, R. B., & Satterthwaite, M. A. (1983). Efficient Mechanisms for Bilateral Trading. Journal of Economic Theory, 29, 265-281.
- Sobel, J., & Takahashi, I. (1983). A Multistage Model of Bargaining. Review of Economic Studies, vol. 50, issue 3, 411-426.
- Satterthwaite, M. A., & Williams, S. R. (1989). Bilateral trade with the sealed bid k-double auction: Existence and efficiency. Journal of Economic Theory, Jun 1989;48(1):107-133.
- Bulow, J. I., & Klemperer, P. (1994). Auctions vs. Negotiations. NBER Working Paper No. w4608, January 1994.

- Bulow, J., & Klemperer, P. (1996). Auctions Versus Negotiations. The American Economic Review, Vol. 86, No. 1. (Mar., 1996), pp. 180-194.
- Pesendorfer, W., & Swinkels, J. M. (1997). The Loser's Curse and Information Aggregation in Common Value Auctions. Econometrica, Econometric Society, vol. 65(6), 1997.
- Pesendorfer, W., & Swinkels, J. M. (2000). Efficiency and Information Aggregation in Auctions. American Economic Review, vol. 90, no. 3, June 2000 (pp. 499-525).
- Cripps, M. W., & Swinkels, J. M. (2006). Efficiency of Large Double Auctions. Econometrica, Econometric Society, vol. 74 (1), pages 47-92, January 2006.

- Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8, 279-292.
- Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press, Cambridge, Mass., ISBN 0-262-19398-1.
- Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning. In Proceedings of the Eleventh International Conference on Machine Learning, 157-163, Morgan Kaufmann.
- Mnih, V. et al. (2015). Human-level control through deep reinforcement learning. Nature, 2015.

- Mnih, V. et al. (2016). Asynchronous Methods for Deep Reinforcement Learning. 2016.
- Brockman, G., Cheung, V., Pettersson, L., et al. (2016). OpenAl Gym. CoRR, arXiv:1606.01540.
- Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O. (2017). Proximal Policy Optimization Algorithms.
- Silver, D. et al. (2018). A general reinforcement learning algorithm that masters chess, shogi, and Go. 2018.
- Lillicrap, T. P. et al. (2019). Continuous control with deep reinforcement learning. Google Deepmind, London, UK

Algorithms	Applications	
	Stock Trading, Real-Time Bidding, Chess, Go,	
Reinforcement Learning	Starcraft, Atari, Self-driving Cars, Robotics,	
	Physical Control	
Mult: Armed Dandite	Dynamic Pricing, Website Personalization,	
Wulli-Armed Danuits	Digital Marketing, Portfolio Optimization	

Sector	% World GDP	Computerized Markets		
Financial	20.25	NYSE, Chicago Ex, Forex,		
FINANCIAI	20-25	Cryptocurrencies		
Energy	6	Electricity, Natural Gas		
E-Commerce	2.5	Retail, Resale		
Advortising	2	Sponsored Search,		
Auvertising		Display Advertising		

Research Questions

- How well does reinforcement learning perform in auctions?
- How to design auctions for multi-agent reinforcement learning?

Research Directions

- Experiments: Reinforcement Learning and Double Auctions.
- Experiments: Q-learning in First and Second Price Auctions.
- Q-learning and its Replicator Dynamics / Mean Field Games.

A few experiments with reinforcement learning show algorithmic collusion and market inefficiency:

Year	Market	Authors	Methodology
2006	Electricity Auction	Tellidou-Bakirtzis	Experiments
2008	Cournot Oligopoly	Waltman-Kaymak	Theory + Experiments
2020	Bertrand Oligopoly	Calvano et al.	Experiments
2020	Multi-sided Platforms	Johnson et al.	Experiments
2021	One-sided Auction	Banchio-Skrzypacz	Theory + Experiments
2022	Prisioners' Dilemma	Dolgopolov	Theory

Key highlights from theoretical literature:

- Uncertainty about valuations \Rightarrow bluffing \Rightarrow market inefficiency (Myerson-Satterthwaite 1983).
- No. of traders $\uparrow \Rightarrow$ honesty \Rightarrow market efficiency (Satterthwaite-Williams 1989).
- Wilson's 1987 example of Dynamic Bayesian Nash Equilibrium:
 - High-value traders "wait out" low-value traders.
 - Non-serious offers are just not believed, so nobody makes them.
 - Every serious offer is led to completion in a descending "Dutch" way.
 - Each event is used to update assessments.

There are many closely related types of auctions:

- Double Auction traders (buyers/sellers) message the bid/ask offer, and decide whether to buy/sell.
- Single Auction Buyers post bids in single or multiple rounds, and the seller chooses a winner and a payment amount from the bids.
- Posted Price Sellers (buyers) announce ask (bid) prices and then buyers (sellers) accept or reject.

Auctions can vary	along	other	dimensions	as	well:
-------------------	-------	-------	------------	----	-------

Auctions can vary along other dimensions as well:				
Auction Type	Examples			
Single-dimensional vs	Auction based on price vs one based on price,			
multi-dimensional	date, quality			
One-sided or multi-	Art auction vs Call market (buyers and sell-			
sided	ers)			
Open-cry or sealed-bid	Bids (winning or otherwise) are revealed or			
	they are not			
First-price, second-	Winner pays their bid, the second-highest bid			
price or k-th price	or the k-th highest bid			
Single-unit or multi-	Auction for one barrel of wine vs for X barrels			
unit	of wine in one go			
Single-item or multi-	Single item vs Bundles of products (e.g. 10			
item / combinatorial	barrels of wine, 1 box of fish, etc.)			

- Double auction is where buyers place bids and sellers place asks.
- Types:
 - Periodic bids and asks are recieved for a fixed duration, quantity demanded and supplied for each price is computed, and market clearing price is determined. e.g. NYSE Call Market
 - Continuous the market does not close, but the auctioneer immediately matches bids and asks as many as it can in a continuous fashion. e.g. Comodity trading at Chicago
- These are most commonly used in stock markets where buyers and sellers try to sell blocks of shares (multi-unit auctions).

Double Auctions IV

- At any time the prevailing bids and asks can be tallied up to find the quantity demanded and quantity supplied at any given price.
- A range of prices may clear the market, in the figure it is 20-20\$.

Fig. 2. Illustrative supply and demand curves for a double auction.

Double Auctions V

- The main benefit of double auctions is that they economize on information and lead to market clearing prices.
- If an auctioneer wanted to clear this market, she would have to compute the demand and supply curves from everybody's reservation prices. This is infeasible.
- But double auctions have shown that even with extremely sparse information and only a few traders, prices quickly converge to market clearing levels.
- They have also been found to be more efficient than one-sided auctions or posted pricing.
- The mechanism ensures that even with silly trading strategies, prices converge and allocation is efficient.

Here I show how the Policy Gradient theorem can converge to local optima when the environment is stationary.

• Probability of Episode:

$$\mathbb{P}(au|\pi) = \mathbb{P}(s_0) \prod_{t=0}^{T-1} \pi(a_t|s_t) \mathbb{P}(s_{t+1}|s_t,a_t)$$

• Global Expected Return:

$$J(\pi) = E_{\tau \sim \pi} \left[G(\tau) \right] = \int_{\tau} \mathbb{P}(\tau | \pi) G(\tau)$$

Then the problem of Reinforcement Learning is to find the optimal policy,

$$\pi^* = \operatorname{argmax}_{\pi} J(\pi)$$

Since policy π_{θ} is parametrized by θ , we can incrementally improve $J(\theta)$ by gradient ascent:

$$\theta \leftarrow \theta + \alpha \frac{dJ(\theta)}{d\theta}$$

where,

$$\frac{dJ(\theta)}{d\theta} = \int_{\tau} \frac{d\mathbb{P}(\tau|\pi_{\theta})}{d\theta} G(\tau)$$
$$= \int_{\tau} \frac{d\log\mathbb{P}(\tau|\pi)}{d\theta} \mathbb{P}(\tau|\pi) G(\tau)$$
$$= E[\frac{d\log\mathbb{P}(\tau|\pi)}{d\theta} G(\tau)]$$

Taking logs on the probability of an episode,

$$\log \mathbb{P}(\tau | \pi) = \log \mathbb{P}(s_0) + \sum_{t=0}^{T-1} \left[\log \pi(a_t | s_t) + \log \mathbb{P}(s_{t+1} | s_t, a_t) \right]$$

And taking derivative,

$$rac{d\log \mathbb{P}(au|\pi)}{d heta} = \sum_{t=0}^{T-1} rac{d\log(\pi_{ heta}(a_t|s_t))}{d heta}$$

we get the policy gradient,

$$\frac{dJ(\theta)}{d\theta} = E[\sum_{t=0}^{T-1} \frac{d\log(\pi_{\theta}(a_t|s_t))}{d\theta}G(\tau)]$$

Which can be approximated via sampling from $\mathbb D$ set of episodes:

$$rac{dJ(heta)}{d heta} = |\mathbb{D}|^{-1} \sum_{\mathbb{D}} [\sum_{t=0}^{T-1} rac{d\log \pi_{ heta}(a_t|s_t)}{d heta} G(au)]$$

Compare with the gradient to maximize the log-likelihood of observing these trajectories from this policy,

$$\frac{dJ(\theta^{ML})}{d\theta^{ML}} = |\mathbb{D}|^{-1} \sum_{\mathbb{D}} [\sum_{t=0}^{T-1} \frac{d\log \pi_{\theta}(a_t|s_t)}{d\theta} G(\tau)]$$

So policy gradient is an adjusted ML gradient but moves policy towards trajectories that bring higher rewards!.

We enable **continuous actions** through neural network f,

$$a_t \sim \mathbb{N}(\mu(s_t; \theta), \sigma)$$

Then log-probability is,

$$\log \pi_{\theta}(\boldsymbol{a}_t | \boldsymbol{s}_t) = -\frac{1}{2} \log 2\pi\sigma^2 - \frac{(\boldsymbol{a}_t - \mu(\boldsymbol{s}_t; \theta))^2}{2\sigma^2}$$

And its derivative,

$$\frac{d\log \pi_{\theta}(a_t|s_t)}{d\theta} = -\frac{1}{2}\sigma^{-2}(a_t - \mu(s_t;\theta))\frac{d\mu(s_t;\theta)}{d\theta}$$

The last term is obtained via backpropagation.

Demo: Teaching a robot how to walk.

Example: Google Ad Exchange³

- 2 million websites
- 90% of internet users
- 70% of impressions

- 90% publisher ad share
- 30 cents per ad \$
- 150-300ms per auction

³Google recently moved from a Second Price Auction to a First Price Auction. Apart from reserve prices, winner pays a 20% fee and the winning bid is revealed. The US Display Advertising market supports 13 billion ads daily and 20 billion \$ annual revenue.

First Price Auction

- Player Index: $k \in \{1, 2\}$
- Bids: $a_k \in \{0, 0.5, 1\}$
- Identical Private Value: 1
- Winner Fees: $\epsilon = 0.25$
- k-th Payoff $R(a_k, a_{-k})$:

$$= \begin{cases} 1 - a_k - \epsilon & \text{if } a_k > a_{-k} \\ \frac{1 - a_k - \epsilon}{2} & \text{if } a_k = a_{-k} \\ 0 & \text{if } a_k < a_{-k} \end{cases}$$

Payoff Matrices: A, B				
		0	0.5	1
	0	0.5, 0.5	0,0.5	0,0
	0.5	0.5,0	0.25, 0.25	0,0
	1	0,0	0,0	0,0

- PNE: (0,0), (0.5, 0.5)
- Mixed Strategy:

•
$$\mathbb{P}(a_1=0)=\pi$$

• $\mathbb{P}(a_1 = 0.5) = 1 - \pi$

•
$$\mathbb{P}(a_2 = 0) = \sigma$$

•
$$\mathbb{P}(a_2 = 0.5) = 1 - \sigma$$

Replicator Dynamics: EGT

Replicator Dynamics⁴ for Evolutionary Game Theory (EGT):

⁴Borgers and Sarin 1997 show that the replicator dynamics for EGT can be derived from cross-learning, which updates π based on reward r from action j:

$$\Delta \pi_i = \begin{cases} r - \pi_i r & \text{if } i = j \\ -\pi_i r & \text{if } i \neq j \end{cases}$$

Replicator Dynamics: Q-Learning

$$\dot{Q}(i) = \pi_i^{-1} \alpha \left[R(a_1, a_2) + \max_j Q(j) - Q(i) \right]$$
$$\pi_i = \frac{e^{Q(i)}/\tau}{\sum_i e^{Q(j)/\tau}}$$

Replicator Dynamics⁵:

$$\dot{\pi}_{i} = \underbrace{\frac{\alpha \pi}{\tau} \left[(A\sigma)_{i} - \pi' A\sigma \right]}_{\text{Exploitation}} + \underbrace{\alpha \pi_{i} \left[\sum_{j} \pi_{j} \log \pi_{j} - \log \pi_{i} \right]}_{\text{Exploration}}$$

Q: "Long Run" Values α : Learning RateQ(i): Value of action i τ : TemperatureR: Payoff function a_k : Action taken by player k

⁵Kaisers and Tulys 2010. Action *i* is explored more when the entropy (uncertainty) of overall policy is high relative to π_i . And τ balances exploration vs exploitation.

The PDE⁶ for fraction of agents with $Q_t = (Q_t^{a_1}, Q_t^{a_2}..., Q_t^{a_N})$:

$$\dot{p}(Q_t,t) = -\sum_j rac{d[p(Q_t,t)V_j(Q_t,ar{\pi}_t)]}{dQ_t^{a_j}}$$

Expected change in $Q_t^{a_j}$:

$$V_j(Q_t, t) = E[\frac{dQ_t^{a_j}}{dt}] = \alpha \pi_t(a_j) E[r_t(a_j, \bar{\pi}_t) - Q_t^{a_j}]$$

and mean policy $\bar{\pi}_t$:

$$\bar{\pi}_t = \int \int \dots \int \pi_t(a_j) p(Q_t, t) dQ_t^{a_1} \dots dQ_t^{a_N}$$

 $^{^{6}\}mbox{Hu}$ et al., 2019 reduce infinite agent Q-learning to a Fokker-Plank equation without diffusion.