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Introduction



Findings

I conduct experiments with reinforcement learning (RL) in dynamic

double auctions (DA):

• Reinforcement learning can outperform simple trading rules.

• Reinforcer competition is efficient and prices are stable.

• Prices do not show quick reversals or corrections.

• There is no fight to hold the current bid (ask).

However,

• Reinforcers can learn to collude, but can also be vulnerable to it.

• Increasing disclosures can, paradoxically, worsen market outcomes.
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Research Outline

• Motivation:

• Breakthrough in learning algorithms for dynamic problems, especially

with high dimensional states and granular action spaces.

• Rise of high frequency, computerized markets driven by algorithms

not humans; in sectors like finance, advertising, energy, e-commerce.

• Questions:

• How well can reinforcement learning perform in double auctions?

• How do we design auctions when traders use reinforcement learning?

• Directions:

• Experimental study of the Santa Fe double auction tournament.

• Monte Carlos with Q-learning and one-sided auctions.

• Study of Q-learning’s replicator dynamic and mean field game.
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Literature

Experiments with discrete or continuous double auctions:

Period Authors Research Focus

1960-1990 Smith, Williams, Porter
• Human Behaviour

• Efficiency

1980-2010

Easley, Ledyard, Gode,

Sunder, Rust, Friedman,

Dickhaut, Gerstaud,

Cliff, Tesuaro, Das

• Strategies

• Performance

• Price Formation

2000-2025
Andrews, Prager, Wellman,

Hu, Tesfatsion, Chen, Tai

• Learning and Evolution

• Evolutionary Stability

Theory: Chatterjee-Samuleson (1983), Myerson-Satterthwaite (1983),

Wilson (1987), Satterthwaite-Williams (1989).
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Synchronized Double Auction



Rules

Santa Fe Discrete DA: (Rust, Palmer, Friedman 1992/1993).

Round ⇒ Period ⇒ Step

• Round: Draw Token Values / Costs

• Period: Replenish Tokens

• Trading Step:

• Bid and Ask
• Buy and Sell

• Price: (Bid + Ask)/2

• Seller Reward: Price - TokenCost

• Buyer Reward: TokenValue - Price

Game Parameters: nRounds, nPeriods, nSteps, nTokens, nBuyers, nSellers
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Token Values

Tokens values (costs) are randomly generated for buyers (sellers).

Gives us market demand and supply, and market clearing prices.
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Trading Strategies

To benchmark reinforcement learning performance, I use the following

trading strategies as opponents:

• Zero-Intelligence Constrainted (ZIC) - bids randomly while

respecting a budget. (Gode and Sunder 1993)

• Easley-Ledyard (EL) - human-like bluffing at first, then adjusts profit

margin according to performance. (Easley and Ledyard 1983)

• Zero-Intelligence Plus (ZIP) - bids randomly in the range of an

adjustable profit margin. (Cliff and Bruten 1997)

• Gjerstad-Dickhaut (GD) - forecasts winning bids and bids if profit is

maximized. (Gjerstad and Dickhaut 1998)

• Kaplan-Ringouette (KR) - does not bid until the bid-ask gap closes,

then jumps in and steals the deal. (Rust, Palmer, Friedman 1992/1993)
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Reinforcement Learning



Notation

Variables Functions

State: s ∈ RN Round: τ = (s0, a1, r1, ....aT , rT , sT )

Action1: a ∈ [−1, 1] Policy: πθ(a|s) = P(at = a|st = s; θ)

Reward: r ∈ R Return: G (τ) =
∑T

t=0 γ
trt

Discounting: γ ∈ (0, 1) Exp. Return: Jπ = Eτ∼π[G (τ)]

1Are linked to bids (asks) by normalization frac = (a+ 1)/2

bid = bidminfrac + bidmax(1− frac)
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Policies π(a|s; θ)

Policies are parametrized through neural networks: at ∼ N(µ(st ; θ), σ)

This permits continuous stochastic actions and high dimensional states.
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Algorithm

REINFORCE is a popular policy gradient algorithm. (Williams 1992)

• Objective: Improve policy πθ.

• While not converged, do:

• Create dataset of rounds D using πθ

• Compute return: G(τ) for τ in D
• Backpropagation: dµ(st ;θ)

dθ

• Compute log-probability gradient: d log(πθ(at |st ))
dθ

• Compute policy gradient:

dJ(θ)

dθ
= |D|−1

∑
D

[
T−1∑
t=0

d log πθ(at |st)
dθ

G(τ)]

• Update policy parameters: θ ← θ + α dJ(θ)
dθ
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Experiments



Experimental Design

A standard series of experiments:

Single Agent RL:
A1: Baseline

A2: vs Particular Trading Strategy

Multi-Agent RL (Main):

B1: Baseline

B2: Inelastic Supply

B3: Few Buyers

B4: Single Token Only

B5: Non-Random Tokens

B6: High Discount Factor

B7: Reduced Disclosures

B8: Zero Disclosures

B9: Conditional Disclosures

B10: Second-Price DA

B11: NYSE Rule

B12: Offer Fees

B13: Reserve Prices
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Measuring Performance

Performance is measured across Rounds, not Periods or Steps.

Individual Performance

• Avg. Profit in last 100 rounds

• Std. Profit in last 100 rounds

• Speed of Learning

Market Performance

• Efficiency: fraction of total possible surplus obtained.

• Price Dispersion around Market Clearing Prices

• Speed of Convergence of Prices to Clearing Levels
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Game Parameters

These parameters stay fixed in all experiments.

• nRounds: 5,000

• nPeriods: 1

• nSteps: 16

• nTokens: 4

• nBuyers: 4

• nSellers: 4

Token values are drawn from a fixed distribution (normal).
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Experiment I - Single Agent RL

Buyer 1 and Seller 1 are Reinforcers, rest are ZIC. There are no public

disclosures. We look at average profit over 100 rounds.

The reinforcers, with minimal information, outsmart the ZIC agents.
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Experiment I - Single Agent RL

Prices are volatile but neither side seems to enjoy market power.

Figure 1: Red (Bids), Blue (Asks), Black (Prices)

Unlike ZIC agents, reinforcers are able to bid close to prices. 14



Experiment II - Multi-Agent RL (No Disclosure)

All agents are reinforcers, there are no public disclosures.

Prices are not volatile, and efficiency is very high - but there is noticeable

buyer power. Offers are also closer together.
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Experiment III - Multi-Agent RL (Full Disclosure)

All agents are reinforcers, there is full public disclosure.

Prices continue to be less volatile and efficiency remains high, but buyer

power is pronounced. Red (Bids), Blue (Asks), Black (Prices).
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Summary of Experimental Results

Criterion
Humans

Only2
ZIC Only

Single-RL

(1B,1S)

Multi-RL

(No Disc)

Multi-RL

(Full Disc)

Efficiency as %

of realized vs

possible

Higher

than ZIC
98.7 (0.02) 98.6 (0.02) 99.4 (0.01) 0.99 (0.06)

Buyer Efficiency

as % of realized

vs possible

Close to

100%.
1.03 (0.15) 1.03 (0.12) 1.05 (0.12) 1.07 (0.15)

Mean Absolute

Deviation of

Prices from

Clearing Levels

Lower than

ZIC
4.63 (0.96) 4.51 (0.91) 1.53 (0.56) 2.28 (0.99)

Price volatility

in Std Dev

Lower than

ZIC
5.41 (0.98) 5.11 (0.89) 1.99 (0.99) 2.15 (0.65)

1st order Auto

correlation in

Prices

Close to

ZIC (-0.5

to -0.25)

-0.04

(0.24)

-0.03

(0.25)

+0.09

(0.29)

+0.019

(0.32)

Avg. % Current

Bid Handovers

Higher

than ZIC

(nearer to

100%)

72% 67% 60% 64%

2Gode and Sunder 1993, Cason and Friedman 1996.
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Summary of Findings

I study reinforcement learning (RL) in dynamic double auctions (DA):

• Reinforcement learning can outperform simple trading rules.

• Reinforcer competition is efficient and prices are stable.

• Prices do not show quick reversals or corrections.

• There is no fight to hold the current bid (ask).

However,

• Reinforcers can learn to collude, but can also be vulnerable to it.

• Increasing disclosures can, paradoxically, worsen market outcomes.
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Next Steps

• Conduct the full experiment.

• Ensure valid inference.

• Find which disclosures improve outcomes.

• Test reinforcers against humans.
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Appendix



FAQ-I

• What is the economic motivation?

• To study the effect of information disclosures on market outcomes

when traders use reinforcement learning.

• Why not use a theoretical approach?

• Because attempts to reduce reinforcement learning to a differential

equation have only been done for a single state (Banachio et al,

Asker-Pakes).

• No general characterization of Bayesian Nash Equilibria for the

dynamic double auction. Wilson (1987) provides a single example,

but that is rejected by human data (Cason & Friedman 1996).

• Is this a computer science project?

• No, it’s a computational experiment. Any computer science is

confined to the agent’s learning process.
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FAQ-II

• Why should we care about this research?

• It demonstrates the possibility of algorithmic collusion even in a

market widely considered to be highly efficient.

• It offers some policy advise on market design which the current

theoretical approach cannot address.

• How generalizable are these results?

• I use a very standardized double auction setup and a classic

reinforcement learning algorithm; so this study generalizes as well as

most papers in this field.

• I collect data over multiple trials to ensure valid inference.

• Can experiments have a wider appeal than theorem proving?

• The famed efficiency of the double auction was establised in

experiments such as Smith (1962), Gode-Sunder (1993). In contrast,

theoretical analysis of the double auction highlights inefficiencies

(e.g. Myserson-Satterthwaite 1983).
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Research Motivation

Algorithms Applications

Reinforcement Learning

Stock Trading, Real-Time Bidding, Chess, Go,

Starcraft, Atari, Self-driving Cars, Robotics,

Physical Control

Multi-Armed Bandits
Dynamic Pricing, Website Personalization,

Digital Marketing, Portfolio Optimization

Sector % World GDP Computerized Markets

Financial 20-25
NYSE, Chicago Ex, Forex,

Cryptocurrencies

Energy 6 Electricity, Natural Gas

E-Commerce 2.5 Retail, Resale

Advertising 2
Sponsored Search,

Display Advertising
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Research Outline

Research Questions

• How well does reinforcement learning perform in auctions?

• How to design auctions for multi-agent reinforcement learning?

Research Directions

• Experiments: Reinforcement Learning and Double Auctions.

• Experiments: Q-learning in First and Second Price Auctions.

• Q-learning and its Replicator Dynamics / Mean Field Games.
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Algorithmic Collusion

A few experiments with reinforcement learning show algorithmic

collusion and market inefficiency:

Year Market Authors Methodology

2006 Electricity Auction Tellidou-Bakirtzis Experiments

2008 Cournot Oligopoly Waltman-Kaymak Theory + Experiments

2020 Bertrand Oligopoly Calvano et al. Experiments

2020 Multi-sided Platforms Johnson et al. Experiments

2021 One-sided Auction Banchio-Skrzypacz Theory + Experiments

2022 Prisioners’ Dilemma Dolgopolov Theory
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Theoretical Insights

Key highlights from theoretical literature:

• Uncertainty about valuations ⇒ bluffing ⇒ market inefficiency

(Myerson-Satterthwaite 1983).

• No. of traders ↑ ⇒ honesty ⇒ market efficiency

(Satterthwaite-Williams 1989).

• Wilson’s 1987 example of Dynamic Bayesian Nash Equilibrium:

• High-value traders “wait out” low-value traders.

• Non-serious offers are just not believed, so nobody makes them.

• Every serious offer is led to completion in a descending “Dutch” way.

• Each event is used to update assessments.
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Double Auctions I

There are many closely related types of auctions:

• Double Auction - traders (buyers/sellers) message the bid/ask offer,

and decide whether to buy/sell.

• Single Auction - Buyers post bids in single or multiple rounds, and

the seller chooses a winner and a payment amount from the bids.

• Posted Price - Sellers (buyers) announce ask (bid) prices and then

buyers (sellers) accept or reject.
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Double Auctions II

Auctions can vary along other dimensions as well:

Auction Type Examples

Single-dimensional vs

multi-dimensional

Auction based on price vs one based on price,

date, quality

One-sided or multi-

sided

Art auction vs Call market (buyers and sell-

ers)

Open-cry or sealed-bid Bids (winning or otherwise) are revealed or

they are not

First-price, second-

price or k-th price

Winner pays their bid, the second-highest bid

or the k-th highest bid

Single-unit or multi-

unit

Auction for one barrel of wine vs for X barrels

of wine in one go

Single-item or multi-

item / combinatorial

Single item vs Bundles of products (e.g. 10

barrels of wine, 1 box of fish, etc.)
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Double Auctions III

• Double auction is where buyers place bids and sellers place asks.

• Types:

• Periodic - bids and asks are recieved for a fixed duration, quantity

demanded and supplied for each price is computed, and market

clearing price is determined. e.g. NYSE Call Market

• Continuous - the market does not close, but the auctioneer

immediately matches bids and asks as many as it can in a continuous

fashion. e.g. Comodity trading at Chicago

• These are most commonly used in stock markets where buyers and

sellers try to sell blocks of shares (multi-unit auctions).
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Double Auctions IV

• At any time the prevailing bids and asks can be tallied up to find the

quantity demanded and quantity supplied at any given price.

• A range of prices may clear the market, in the figure it is 20-20$.
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Double Auctions V

• The main benefit of double auctions is that they economize on

information and lead to market clearing prices.

• If an auctioneer wanted to clear this market, she would have to

compute the demand and supply curves from everybody’s

reservation prices. This is infeasible.

• But double auctions have shown that even with extremely sparse

information and only a few traders, prices quickly converge to

market clearing levels.

• They have also been found to be more efficient than one-sided

auctions or posted pricing.

• The mechanism ensures that even with silly trading strategies, prices

converge and allocation is efficient.
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Policy Gradient Theorem I

Here I show how the Policy Gradient theorem can converge to local

optima when the environment is stationary.

• Probability of Episode:

P(τ |π) = P(s0)
T−1∏
t=0

π(at |st)P(st+1|st , at)

• Global Expected Return:

J(π) = Eτ∼π [G (τ)] =

∫
τ

P(τ |π)G (τ)

Then the problem of Reinforcement Learning is to find the optimal policy,

π∗ = argmaxπJ(π)
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Policy Gradient Theorem II

Since policy πθ is parametrized by θ, we can incrementally improve J(θ)

by gradient ascent:

θ ← θ + α
dJ(θ)

dθ

where,
dJ(θ)

dθ
=

∫
τ

dP(τ |πθ)

dθ
G (τ)

=

∫
τ

d logP(τ |π)
dθ

P(τ |π)G (τ)

= E [
d logP(τ |π)

dθ
G (τ)]
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Policy Gradient Theorem III

Taking logs on the probability of an episode,

logP(τ |π) = logP(s0) +
T−1∑
t=0

[log π(at |st) + logP(st+1|st , at)]

And taking derivative,

d logP(τ |π)
dθ

=
T−1∑
t=0

d log(πθ(at |st))
dθ

we get the policy gradient,

dJ(θ)

dθ
= E [

T−1∑
t=0

d log(πθ(at |st))
dθ

G (τ)]
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Policy Gradient Theorem IV

Which can be approximated via sampling from D set of episodes:

dJ(θ)

dθ
= |D|−1

∑
D
[
T−1∑
t=0

d log πθ(at |st)
dθ

G (τ)]

Compare with the gradient to maximize the log-likelihood of observing

these trajectories from this policy,

dJ(θML)

dθML
= |D|−1

∑
D
[
T−1∑
t=0

d log πθ(at |st)
dθ

G (τ)]

So policy gradient is an adjusted ML gradient but moves policy towards

trajectories that bring higher rewards!.

40



Policy Gradient Theorem V

We enable continuous actions through neural network f ,

at ∼ N(µ(st ; θ), σ)

Then log-probability is,

log πθ(at |st) = −
1

2
log 2πσ2 − (at − µ(st ; θ))

2

2σ2

And its derivative,

d log πθ(at |st)
dθ

= −1

2
σ−2(at − µ(st ; θ))

dµ(st ; θ)

dθ

The last term is obtained via backpropagation.
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Policy Gradient Theorem VI

Demo: Teaching a robot how to walk.
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Example: Google Ad Exchange3

• 2 million websites

• 90% of internet users

• 70% of impressions

• 90% publisher ad share

• 30 cents per ad $

• 150-300ms per auction

3Google recently moved from a Second Price Auction to a First Price Auction. Apart from

reserve prices, winner pays a 20% fee and the winning bid is revealed. The US Display Advertising

market supports 13 billion ads daily and 20 billion $ annual revenue.
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First Price Auction

• Player Index: k ∈ {1, 2}

• Bids: ak ∈ {0, 0.5, 1}

• Identical Private Value: 1

• Winner Fees: ϵ = 0.25

• k-th Payoff R(ak , a−k):

=


1− ak − ϵ if ak > a−k

1−ak−ϵ
2

if ak = a−k

0 if ak < a−k

• Payoff Matrices: A,B

0 0.5 1

0 0.5, 0.5 0, 0.5 0, 0

0.5 0.5, 0 0.25, 0.25 0, 0

1 0, 0 0, 0 0, 0

• PNE: (0,0), (0.5, 0.5)

• Mixed Strategy:

• P(a1 = 0) = π

• P(a1 = 0.5) = 1− π

• P(a2 = 0) = σ

• P(a2 = 0.5) = 1− σ
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Replicator Dynamics: EGT

Replicator Dynamics4 for Evolutionary Game Theory (EGT):

π̇i = πi

 (Aσ)i︸ ︷︷ ︸
Fitness of action i against σ

− π′Aσ︸ ︷︷ ︸
Avg. Fitness for π



σ̇i = σi

 (π′B)i︸ ︷︷ ︸
Fitness of action i against π

− π′Bσ︸ ︷︷ ︸
Avg. Fitness for σ


πi : Prob of playing action i

π : (π1, π2, . . . , πN)

σi : Prob of playing action i

σ : (σ1, σ2, . . . , σM)

4Borgers and Sarin 1997 show that the replicator dynamics for EGT can be derived from

cross-learning, which updates π based on reward r from action j :

∆πi =

{
r − πi r if i = j

−πi r if i ̸= j
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Replicator Dynamics: Q-Learning

Q̇(i) = π−1
i α

[
R(a1, a2) + max

j
Q(j)− Q(i)

]
πi =

eQ(i)/τ∑
j e

Q(j)/τ

Replicator Dynamics5:

π̇i =
απ

τ
[(Aσ)i − π′Aσ]︸ ︷︷ ︸
Exploitation

+απi

∑
j

πj log πj − log πi


︸ ︷︷ ︸

Exploration

Q : “Long Run” Values

Q(i) : Value of action i

R : Payoff function

α : Learning Rate

τ : Temperature

ak : Action taken by player k

5Kaisers and Tulys 2010. Action i is explored more when the entropy (uncertainty) of overall

policy is high relative to πi . And τ balances exploration vs exploitation.
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Mean Field Games: Q-Learning

The PDE6 for fraction of agents with Qt = (Qa1
t ,Qa2

t ....QaN
t ):

ṗ(Qt , t) = −
∑
j

d [p(Qt , t)Vj(Qt , π̄t)]

dQ
aj
t

Expected change in Q
aj
t :

Vj(Qt , t) = E [
dQ

aj
t

dt
] = απt(aj)E [rt(aj , π̄t)− Q

aj
t ]

and mean policy π̄t :

π̄t =

∫ ∫
...

∫
πt(aj)p(Qt , t)dQ

a1
t ...dQaN

t

6Hu et al., 2019 reduce infinite agent Q-learning to a Fokker-Plank equation without

diffusion.
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