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Introduction



Research Questions

• In some markets, product aesthetics drives purchases.

• Fashion and Apparel, Designer Bags, Interior Design, Home Decor,

Watches, Jewellery, Art, Luxury Cars, Shoes, Dating and Marraige.

• Research Questions:

• How do we extract product aesthetics from an image?

• How can we capture a diversity of aesthetic taste?

• Will this change estimates of price sensitivity?

• Can AI design new aesthestics?
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Motivation

Survey1: What makes for a great shopping experience?

1Namogoo 2018 Survey: A national sample of 1,372 U.S. online shoppers.
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Motivation

2018 Survey2: What is important when searching for a product online?

2Intent Lab, Northwestern U: A national sample of 1000 U.S. residents.

4



Motivation

Why should we care about images?

• Consumers care a lot about them.

• 88% say high-quality product imagery is important (Nfinite 2022).

• Help us understand how consumers respond to prices:

• By controlling for confounders.

• By building instruments.

• They are also interesting in their own right:

• For understanding the aesthetic taste of a demographic.

• For developing and testing new designs.
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Literature

Only recently3, some papers use images to estimate price sensitivity:

• Quah & Williams (2021): Logit-demand for shoes using images and

debiased machine learning.

• Giovanni et al., (2021): Similarity between Amazon product

webpages used to model error covariances in a nested logit.

• Han et al., (2021): Demand for fonts using dense embeddings from

image autoencoders.

Other papers also use high dimensional information:

• Magnolfi el al., (2022): Demand estimation for cereal with tSNE

embeddings of product characteristics from consumer surveys.

• Zhang (2024): Differentiates consumer price sensitivities by

browsing activity in a market for smartphones.
3Image processing only took off in 2014, high dim econometrics after 2016.
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Contribution

Two main limitations:

• No individual consumer heterogeneity.

• Focus has been mainly on price sensitivity.

The contribution of this project:

• Modelling the variation in consumer aesthetic taste.

• Estimating individual level price sensitivities.

• Showing how deep learning can be useful to economic modelling.
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Methodology

The methodology for this project is derived from:

• Farrell et al. (2018, 2021): Neural networks can be used to

model parameters and test hypotheses.

• Chernozhukov et al. (2018, 2022): Sample-splitting can eliminate

bias due to the use of regularized machine learning methods.

• Berry and Haile (2021), Ken Train (2009), Russell (2015): Surveys

on demand estimation, discrete choice, and brand choice.

• Ludwig & Mullainathan (2023): Hypothesis generation through

machine learning methods.
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Data



Data Source

• Hennes & Mauritz (H&M) is a Swedish fast fashion brand:

• 75 geographical markets

• 4800 stores

• 107,000 employees

• 24.8 Billion USD annual revenue

• Motto: “to make fashion accessible and enjoyable for all”

• Runway to store in 2 weeks.

• Trendy and affordable clothes of lower quality.
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Industry Snapshot
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Data Summary

• Sample of two years of shopping transactions in an undisclosed

European market (possibly the Netherlands):

• 1,371,980 Customers

• Median age 32, 66% Active

• 108,775,015 Granular Products4.

• Ladieswear (25%), Divided (14%), Menswear (12%)...

• Trousers (11%), Dress (10%), Sweater (9%)...

• 45875 products, 43404 text descriptions

• 31,788,324 Transactions

• 70% offline, 30% online

• Women’s Dresses: Popular category that has a large number of

products with a wide range of distinct SKUs (2300).

4Stock Keeping Units (SKUs)
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Dresses: Best Sellers
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Dresses: Purchases Per Day

Majority of shoppers buy only one dress in a session.
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Dresses: Sales over Time

• Strong seasonal variations

• Skewed: few products gather the most sales.
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Dresses: Avg Price over Time

• Sharp price discounting.

• Bell shaped prices.
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Main Takeaways

The data suggests that:

• Discrete choice framework is appropriate.

• Images matter, at least for online shopping.

• Seasonal variation matters.

In the next section, I show how to work with images and text.
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Representing Images and Text



Embeddings

We can represent images and text by dense, high dimensional vectors

called embeddings:

• We can estimate these embeddings ourselves.

• However, better to use pre-trained embedding models:

• More parameters

• More data

• More training time

• I validate the usefulness of embedding representation:

• They can help us predict prices and sales.

• They cluster the product space intuitively.
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Embedding Images: Convolution Operator

A 3x128x128 image Mj has 49152 pixels for product j. A regression

like sj = β′Mj does not work because interactions between pixels matter5.

The convolution operator allows parameter sharing and captures visual

concepts from local spatial interactions between pixels.
5With full interactions we get 1,207,984,128 parameters.
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Embedding Images: Conv-Net Architecture

Different filters extract different aspects of the image (e.g., shape,

texture, pattern, etc.) and refine them into higher-level concepts.

The final output is a dense high-dimensional embedding e(Mj) ∈ RK that

represents the attributes from the image6.

6Can be refined even further.
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Embedding Images: Image Regression

Estimate CNN on raw image pixels Mj to predict sales share sj :

sj = gCNN(Mj) + ϵj

and get an out-of-sample R2 of approximately 0.35.

Manually changing images, changes the prediction.
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Contrastive Language-Image Pre-training (CLIP)

• I use Fashion CLIP7, a model that matches image-text pairs to

other image-text pairs that fall under the same category.

• It encodes both images and texts into embedding vectors in a

shared latent space.

• For product j , having image Mj and text Tj , I get,

eM(Mj) ∈ R512

eT (Tj) ∈ R512

7Chia et al., 2022, Nature Scientific Reports: Trained on 700,000 pairs from Farfetch,

one of the largest fashion luxury retailers in the world.
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Validation 1: Predictive Performance of Image Embeddings

Image embeddings can predict sales and prices.

yj = f (eM(Mj)) + ϵj

Model f R2 Scores for Log Shares R2 Scores for Log Prices

Train Test Train Test

OLS 0.69 0.27 0.69 0.33

Ridge 0.68 0.31 0.69 0.37

Random Forests 0.87 0.43 0.86 0.41

Deep Nets 0.87 0.44 0.62 0.46

Boosting Machine 0.88 0.45 0.89 0.48

Ensemble 0.89 0.47 0.79 0.49

22



Validation 2: Predictive Performance of Text Embeddings

Text embeddings can predict sales and prices.

yj = f (eT (Tj)) + ϵj

Model f R2 Scores for Log Shares R2 Scores for Log Prices

Train Test Train Test

OLS 0.59 0.0 0.76 0.39

Ridge 0.57 0.08 0.74 0.47

Random Forests 0.77 0.34 0.85 0.63

Deep Nets 0.72 0.20 0.68 0.56

Boosting Machine 0.78 0.34 0.87 0.67

Ensemble 0.77 0.33 0.79 0.64
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Validation 1: Predictive Performance of Combined Embeddings

Combining information does even better.

yj = f (eM(Mj), eT (Tj)) + ϵj

Model f R2 Scores for Log Shares R2 Scores for Log Prices

Train Test Train Test

OLS 0.85 0.04 0.88 0.26

Ridge 0.83 0.26 0.87 0.42

Random Forests 0.88 0.47 0.90 0.59

Deep Nets 0.94 0.38 0.77 0.49

Boosting Machine 0.90 0.49 0.92 0.63

Ensemble 0.93 0.51 0.92 0.67
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Validation 4: Visualizing the Product Space

I use tSNE8 to reduce to two dimensions: etSNE (eM(Mj), eT (Tj)) ∈ R2

and then detect 24 clusters9.

8t-distributed Stochastic Neighbour Embedding
9Each dot is a dress, and each image is the most representative dress in that cluster.
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Validation 5: Within Cluster Variation
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Validation 5: Within Cluster Variation
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Main Takeaways

This section shows that:

• Embeddings represent images and text well:

• They are predictive of sales and prices

• They cluster products intuitively.

• OLS cannot extract insights from embeddings.

• Deep networks do better because they allow complex interactions.

In the next section, I incorporate embeddings into choice models.
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Consumer Choice Models



Notation

Key terms:

• yi Product purchases by consumer i (Categorical)

• pj Avg Price of product j

• Xj = [eM(Mj), eT (Tj)] Text and Image Embeddings of product j

• Di Demographics of consumer i

• α, αDNN Price Parameter

• gDNN Deep Neural Network that measures aesthetic taste
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Consumer Choice Model

For i-th consumer the utility given by the j-th product is given by,

uij = h1(pj ,Di ; θ1) + h2(Xj ,Di ; θ2) + ϵij

and discrete choice is,

yi = argmax
j∈{1,2,...,J}

h1(pj ,Di ; θ1) + h2(Xj ,Di ; θ2) + ϵij

If ϵij is EV(1) and IID,

P(yi = j) =
eh1(pj ,Di ;θ1)+h2(Xj ,Di ;θ2)∑
k e

h1(pk ,Di ;θ1)+h2(Xk ,Di ;θ2)
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Estimation

This leads to the loglikelihood:

ℓ(θ) =
∑
i

∑
j

1(yi = j) log

(
eh1(pj ,Di ;θ1)+h2(Xj ,Di ;θ2)∑
k e

h1(pk ,Di ;θ1)+h2(Xk ,Di ;θ2)

)

• Estimation: get ℓ′(θ) (backdrop) + hill climbing

• StdErr: Hessians + Influence functions (Farell et al., 2018, 2021)

• No outside good! Model limited to consumers who do purchase.
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Functional Forms

I estimate models from simple to complex:

• uij = α log pj + β′Xj + ϵij

• uij = α log pj + gDNN(Xj) + ϵij

• uij = α log pj + gDNN(Xj ,Di ) + ϵij

• uij = α′di log pj + gDNN(Xj ,Di ) + ϵij

• uij = αDNN(Di ) log pj + gDNN(Xj ,Di ) + ϵij
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Results I: Controls Matter

Model α Std Err p-value

uij = α log pj + β′Xj + ϵij -0.40 0.02 0.00

uij = α log pj + gDNN(Xj) + ϵij -0.26 0.02 0.00

uij = α log pj + gDNN(Xj ,Di ) + ϵij -0.37 0.02 0.00

Table 1: Homogenous Logit Results
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Results II: Heterogenous Price Sensitivity

uij = (α′Di ) log pj + gDNN(Xj ,Di ) + ϵij

Standardized Variable Coefficient

Intercept -0.4249

Active Communications -0.1551

Age -0.0428

Club Member Active -0.1427

Club Member Left -0.1374

Club Member Processing 0.0976

Following Newsletter 0.3864

News Freq Monthly 0.0928

News Freq None 0.2663

News Freq Regularly 0.0343
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Results III: Heterogenous Price Sensitivity

Neural networks capture a larger heterogeneity in price sensitivity.

uij = αDNN(Di ) log pj + gDNN(Xj ,Di ) + ϵij
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Results IV: Heterogenous Consumer Aesthetics

Using the g function, I rank order all products for two groups of people.

Figure 1: Top ranked dresses for 95th quantile by age (55-60)

Figure 2: Top ranked dresses for 5th quantile by age (18-21)
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Main Takeaways

Some insights from choice models:

• Price sensitivities can range widely:

• A 50% percent discount increases probability of purchase for

some by 25% and others by only 5%.

• Different demographics have very different aesthetic tastes.
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Key Extensions

Some enrichments:

• Richer demographics.

• Brand loyalty.

• Seasonal variation.

• Unobserved heterogeneity.

• Price endogeneity.
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Seasonal Variation and Unobserved Types

Utility for j-th product for i-th customer of type k in period t be,

Uijtk = αk(Di ,St) log pjt + gk(Xj ,Di ,St) + ϵijtk

pjt Prices

St Seasonal Dummies

k Unobserved Type
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Seasonal Variation and Unobserved Types

Allowing unobserved types of consumers helps account for missing

demographic information10:

P(yi = j) =
∑
k

πk
eαk (Di ,St) log pjt+gk (Xj ,Di ,St)∑
j′ e

αk (Di ,St) log pj′t+gk (Xj′ ,Di ,St)

• Additional parameters to estimate: πk , αk , gk

• Choice of k : when the likelihood increases tapers off.

10Heckman and Singer 1984
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Handling Price Endogeneity via Control Functions13

Given instruments Zjt
11 we have,

uijt = α log pjt + g(Xj ,St) + ξjt + ϵijt

where ξjt
12 is the omitted variable. We model ξjt ,

log pjt = q(Xj ,St ,Zjt) + vjt

ξjt = γ(vjt)

This gives us,

P(yi = j) =
eα log pjt+g(Xj ,St)+ξjt+ϵijt∑

j′ e
α log pj′t+g(X ′

j ,St)+ξj′t+ϵij′t

11Lagged prices, lagged shares, BLP, differentiation, costs, Wagelfold, Hausman.
12Promotional activity (feature and display), word-of-mouth effects
13Villas-Boras and Winer 1999, Petrin and Train 2010
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Simulations



Discounting Policies

• Optimal Discounts:

• Given budget B, set of customers arriving Ti , assuming costs cj , how

do we select discounts wij :

w = argmaxwij
E [

∑
i∈Ti

∑
j

1(yi = j)(pj − wij − cj)

∑
i

∑
j

wij = B

• If nonlinear logit is true, what is the profit lost in using simple logit?

• What is the welfare cost of discounts?

• Can price discrimination actually help some section of consumers?
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Design Policies

• Optimal Number of Designs:

• How many designs does H&M really need to stay within 95% of total

profits?

π = maxE [
∑
i∈Ti

∑
j

1(yi = j)(pj − cj)]

• Does H&M have too many designs?

• What if it just sold a core group of products year-round?
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New Design

• Can AI design dresses?

• Use optimization techniques to learn in latent space Xj , to maximize

probability of purchase for a given consumer:

X ∗
j = argmaxXj

P(yi = j)

• What would be the total profit gain?

• What would AI-generated dresses reduce the diversity of options?
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Next steps

• Enrich the model:

• Better demographics.

• Brand loyalty.

• Seasonal variation.

• Unobserved Heterogeneity.

• Price endogeneity.

• Conduct simulations:

• Discounting.

• Number of designs.

• Using AI to develop designs.
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Extended Literature

• Demand/Choice Models: Train (2009), Gandhi and Houde (2019),

Conlon and Gortmaker (2020), Berry and Haile (2021), Petrin and Train

(2010)

• Deep Learning Architechtures: Younesi et al., (2024), Vaswani et al.,

(2017), Kingma et al., (2015), LeCun et al., (2015), He et al., (2016),

Sun et al., (2020).

• Machine Learning in Econometrics: Chernozhukov et al (2018, 2022),

Farrell et al (2018, 2021), Ludwig & Mullainathan (2023).

• Retail Fashion Industry: McCormick et al (2014), Wen et al., (2019),

Bhardwaj and Fairhurst (2009)

• Applied Work: Quah & Williams (2021), Han et al., (2021), Giovanni et

al., (2021), Zhang et al (2022), He et al (2023), Janssens et al (2021),

Zhang (2024)
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Retail Fashion: Industry

• Monopolistic competition - many small to medium firms,

differentiated products and few entry barriers.

• Fashion industry is characterized by:

• large number of incomparable products.

• short product lifespans.

• large number of seasonal products.

• collections with non-replinishable inventory.

• widespread promotions and discounts.

• some amount of brand loyalty but not too much.
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Retail Fashion: Industry Evolution

Since the 1980s there have been critical changes14

• Product Design: End of mass-production (Levi’s 501, White Tees)

and move towards trendy and stylish apparel. This led to increase in

mark-downs due to failure to sell inventory during season.

• Fashion Seasons: Shrinking of time between runway to delivery.

Incoporation of 3-6 midseasons to the traditional fashion calender

(Spring/Summer + Autumn/Winter).

• Supply Chain: Cost reduction from outsourcing. Quick Response

and Just-in-Time strategies to combat longer lead times, complex

supply chains.

• Consumers: More aware of fashion trends, prices, and options.

Increasingly interested in cheaper but fashionable clothes.

14Bhardwaj and Fairhurst 2009
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Retail Fashion: Pricing

• Common methods to determine pricing:

• Keystone markup - if costs are known then a simple markup is

applied (2x, 4x).

• Backwards pricing - find what consumers are willing to pay and then

work back to determine cost and materials.

• Promotion / Discounting - adjust prices to deplete inventory as

season comes to an end.

• With better data, faster development to delivery times, smarter

inventory management, there is more dynamic pricing.

• Fast fashion (Zara, HM), operate at scale, and have made average

prices lower, but luxury brands (Dior, Chanel) have increased prices.
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Dresses: Worst Sellers
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Dresses: New Articles Launched

New dresses show up continously over time.
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Dresses: Distribution of Sales

A few dresses pick up a majority of the sales share.
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Dresses: Distribution of Prices

The price measure in the data has been scaled down.
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Model 1: Image Regression with CNN

I estimate a CNN model on raw image pixels to predict sales share:

sj = g(Mj ; θ)

and get an out of sample R2 of approximately 0.35.

Occlusion can reveal how inputs map to outputs.
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RF Model 1: Counterfactuals

I use Dalle to generate images using the best seller as base to generate

new designs. The predicted market shares are:

sj = g(Mj ; θ) 55



Additional Reduced Form Evidence

• Data {Mj , pj , sj}Jj=0 is split into training (80%) and test (20%)

datasets

• Models tried: Linear Regression, Ridge, Random Forests, Neural

Nets, Light Gradient Boosting, Ensemble

• Feature Sets:

• 512 Image-embeddings: e(Mj)

• 495 TDIDF: t(Tj)

• 410 Sentence BERT: b(Tj)

• 1417 Image-embeddings + BERT + TDIDF: e(Mj), b(Tj), t(Tj)

• 50 Image-embeddings + BERT + TDIDF (factors):

f [e(Mj), b(Tj), t(Tj)]

• Regularization: L2 parameter 5.0 for Ridge and Neural Nets,

Min samples leaf = 10 for random forests and min data leaf=100

for LGBM. Voting (Ensemble) averages neural net and LGBM.
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Product Usage

Features from customer demographics aggregated to product level.

Table 2: Log Sales and Prices on Product Usage

Model R2 Scores for Log Sales R2 Scores for Log Prices

Train Test Train Test

OLS 0.03 0.04 0.02 0.02

Ridge 0.01 0.01 0.00 0.00

Random Forests 0.41 0.20 0.33 -0.01

Deep Nets 0.00 0.01 -0.10 -0.08

LGBM 0.38 0.17 0.27 -0.02

Voting 0.25 0.15 0.16 0.01
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Product Categories

Large number of organizational dummies and other dummies related to

product color, texture, etc.

Table 3: Log Sales and Prices on Product Categories

Model R2 Scores for Log Sales R2 Scores for Log Prices

Train Test Train Test

OLS 0.62 -7.05e+22 0.16 -3.79e+24

Ridge 0.59 0.61 0.14 -0.04

Random Forests 0.58 0.60 0.17 0.01

Deep Nets 0.64 0.62 0.07 -0.01

LGBM 0.41 0.40 0.10 -0.03

Voting 0.56 0.56 0.09 -0.01
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Image-Embeddings

Image-Em

Table 4: Log Sales and Prices on Image Features

Model R2 Scores for Log Sales R2 Scores for Log Prices

Train Test Train Test

OLS 0.68 0.22 0.69 0.29

Ridge 0.65 0.38 0.66 0.42

Random Forests 0.78 0.43 0.76 0.41

Deep Nets 0.66 0.45 0.55 0.45

LGBM 0.89 0.46 0.88 0.42

Voting 0.82 0.49 0.76 0.47
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BERT

Table 5: Log Sales and Prices on BERT Features

Model R2 Scores for Log Sales R2 Scores for Log Prices

Train Test Train Test

OLS 0.72 0.38 0.27 -0.44

Ridge 0.38 0.29 0.06 -0.03

Random Forests 0.83 0.59 0.43 -0.11

Deep Nets 0.35 0.26 0.02 -0.01

LGBM 0.92 0.69 0.52 -0.19

Voting 0.73 0.55 0.34 -0.04
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TFIDF

Table 6: Log Sales and Prices on TFIDF Features

Model R2 Scores for Log Sales R2 Scores for Log Prices

Train Test Train Test

OLS 0.73 -1.54e+20 0.27 -3.78e+19

Ridge 0.57 0.46 0.12 -0.05

Random Forests 0.74 0.57 0.33 -0.06

Deep Nets 0.56 0.45 0.03 -0.01

LGBM 0.76 0.56 0.35 -0.07

Voting 0.69 0.53 0.22 -0.01
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All Features

Table 7: Log Sales and Prices on All Features

Model R2 Scores for Log Sales R2 Scores for Log Prices

Train Test Train Test

OLS 0.99 -0.77 0.95 -4.61

Ridge 0.88 0.72 0.75 0.39

Random Forests 0.86 0.65 0.77 0.39

Deep Nets 0.83 0.70 0.58 0.45

LGBM 0.95 0.71 0.90 0.43

Voting 0.91 0.74 0.78 0.47
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All Features Compressed

Factor analysis is used to compress features to 50 dimensions.

Table 8: Log Sales and Prices on All Features Compressed to 50

Model R2 Scores for Log Sales R2 Scores for Log Prices

Train Test Train Test

OLS 0.56 -1.17e+10 0.39 -3.70e+11

Ridge 0.56 0.53 0.39 0.35

Random Forests 0.75 0.49 0.66 0.33

Deep Nets 0.83 0.59 0.43 0.36

LGBM 0.83 0.55 0.76 0.34

Voting 0.84 0.60 0.63 0.37
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Attention-Based Embeddings

Moving beyond word counting, we need to understand how words

interact in a given context:

• Text Description: T = (w1,w2,w3, ...,wN)

• Word Embeddings: eW (T ) = (h1, h2, h3, ..., hN)

• Attention Weight: αn =
exp{hTn V/λ}∑
n′ exp{hTn′V/λ} tells us the importance of

word wn in determining the “context” of the entire description T .

• Context: h =
∑

n αnhn A high dimensional representation of the

entire text T , which allows us to differentiate the text along multiple

“attributes”.

• Scaler Prediction: s = hTW picks up relevant contexts.

Trainable parameters: query weights V , context weights W .
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Attention-Based Embeddings

The high dimensional context layer h = e(T ) will now represent our

entire text T .

We can train this ourselves, or use a pre-trained model.
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Model 3: Text Regression with Word Counts

I generate dummies from the text based on n-grams and estimate a Ridge

regression on log sales to get an out of sample R2: 0.37.

Top 10 β

1. crêpe weave neck

2. neckline

3. viscose

4. sheen opening

5. wide flounce hem unlined

6. short fitted dress velour

7. buttons short

8. calf length dress

9. neck rounded

10. sleeves smocking

Bottom 10 β

1. straight

2. tie

3. dress

4. short dress satin

5. unlined

6. elasticated cuffs

7. appliqués

8. striped

9. seam waist slit

10. shoulder dress
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Model 3: Variation by Age

Keyword significance varies across age groups, emphasizing diverse product

preferences. “Young” is below 21, and “old” is above 60.

All (R² = 0.37)

• crêpe weave neck

• neckline

• viscose

• sheen opening

• wide flounce hem

unlined

Young (R² = 0.38)

• short dress

• cuffs

• long wide sleeves

• opening narrow ties

• opening narrow

Old (R² = 0.54)

• viscose

• viscose weave neck

• wide flounce hem

unlined

• buttons short

• shoulder straps

buttons
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Model 3: Machine Learning Methods

Moving beyond linear models, I find that nonlinear models can better

extract generalizable signals.

Table 9: R2 Scores for Models on Log Shares

Model R2 Train R2 Test

OLS 1.00 0.00

Ridge 1.00 0.66

Random Forests 0.76 0.59

Deep Nets 0.98 0.75

Boosting Machines 0.77 0.59

Ensemble 0.93 0.74

Due to large covariate set (≥ 10, 000), OLS completely overfits.
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Model 4: Sentence BERT

Sentence-BERT uses attention mechanisms, along with other techniques,

to create 410 dimensional sentence embeddings eB(Tj).

Table 10: R2 Scores for Log Sales on Sentence-BERT Features

Model Train Test

OLS 0.73 0.40

Ridge 0.73 0.42

Random Forests 0.83 0.61

Deep Nets 0.95 0.66

Boosting 0.92 0.68

Ensemble 0.96 0.72
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Model 4: Visualization

I discover natural “topics” in the text embedding through clustering and

find representative images for them.
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tSNE and Kmeans Clustering

I compress the 512-dim image embeddings into 2 dimensions via t-SNE

and find clusters:

• t-SNE (t-distributed Stochastic Neighbor Embedding):

• Reduces dimensions by minimizing the Kullback-Leibler divergence

between two distributions:

• C = KL(P∥Q) =
∑

i

∑
j pij log

pij
qij

• pij - probability of picking j as neighbor of i in high-dimensional

space.

• qij - probability in the low-dimensional embedding.

• K-Means Clustering:

• Objective is to partition n observations into k clusters by minimizing

within-cluster variances:

• J =
∑k

i=1

∑
x∈Si

∥x − µi∥2

• µi is the mean of points in Si .
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Autoencoders

We want to compress eO(Mj), eB(Tj) without losing too much

information (e.g. tSNE):

• Autoencoders: Estimate a neural network to predict

eO(Mj), eB(Tj) from itself, and use hidder layer outputs.

• Input data: x = [eO(Mj), eB(Tj)]

• Encoder function: f (high dim to low dim)

• Decoder function: r (low dim to high dim)

• Reconstruction Loss: Mean squared error (MSE)

L(x, f, r) = ∥x− r(f (x))∥2 (1)

• Latent Space: The encoder maps the input to the latent space

f (x) (hidden representation), which the decoder then uses to

reconstruct the input.

I compress the image + text embeddings into 100 dimensions:

Xj = f (eO(Mj), eB(Tj)) for structural modelling.
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Market Demand

For J products and N individuals, we have utilities given by,

uij = α log pj + g(Xj) + ξj + ϵij

Xj = f (eO(Mj), eB(Tj))
15

this gives rise to market demand,

log sj = log s0 + α log pj + g(Xj) + ξj

yij Purchase of j product by consumer i eO , eB Embedding Layers

pj Price of product j α Price Elasticity

Mj Image of product j f Autoencoder Layer

Tj Text of product j ϵij IID Gumbel Error

sj Sales share of product j ξj Market demand shock

15I use autoencoders for compressing embeddings into 100 dimensions
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Market Demand: Assumptions

• Utility is linearly separable and ϵij is IID.

• Endogenous Prices: ξj ̸⊥ pj |(Mj ,Tj)

• Exogenous Characteristics: ξj ⊥ (Mj ,Tj)

• We have Kx1 instruments such that E [ξjZjk ] = 0

• Diffentiation IVs: Distances between Xj

• BLP IVs: Sums of other product characteristics X−j .

• Instrument logic: Proximity to competing products affects sales

through reduced markups (prices) but does not enter utility directly.
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Market Demand: Estimation

Here we draw from the debiased machine learning literature

(Chernozhukhov et al., 2016, 2018):

• Partially Linear Regression (PLR):

• yj = θTj + g(Xj) + ϵj

• E [ϵj |Tj ,Xj ] = 0

• Partially Linear Instrumental Variables (PLIV)

• yj = θTj + g(Xj) + ϵj

• E [ϵi |Zj ,Xj ] = 0

• Estimation:

• ML + regularization used to approximate g .

• First stage: Partial out [X ,Z ] from T and y using dataset A

• Second stage: Regress residuals on data B to estimate α
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Market Demand: Results

yj : log shares, log sj Tj : log prices, log pj Xj : Autoencoded Embeddings

Table 11: Coefficient Table

Model OLS PLR IV PLIV

α -0.54 -0.41 -0.84 -0.52

Std. Error 0.08 0.08 0.17 0.18

t-value -7.13 -4.95 -4.88 -2.89

p-value 0.00 0.00 0.00 0.00

LB 0.025 -0.69 -0.57 -1.18 -0.88

UB 0.975 -0.39 -0.25 -0.50 -0.17

N 2319 2319 2319 2319

First stage with LGBMRegressor showed train R2 0.83, test R2 0.67; PLR & PLIV

used 5-fold cross splitting and LGBM to estimate g with 100 min data leaf.
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Consumer Choice: Inference

Farell et al., (2019, 2021) show that inference can be done by deep nets:

• Parametric Loss: θ(x) = argminθE [L(Y ,T , θ(X ))]

• θ(x) = argminθE [L(Y ,T , θ(X ))]

• Exp. Hessian: Λ(x) = E [Lθθ|X ,T ]

• Inference Target: µ = E [H(X , θ(X );T = t∗)]

• Influence Function: Ψ(y , t, x) = H − HθΛ(x)
−1Lθ

• Measures the change in target µ for a infinitesimal change in

observation (y , t, x).

• Estimation:

• Deep neural networks θ̂(x) that minimize empirical loss.

• Ĥθ, L̂θ, Λ̂(xi ) obtained by automatic differentiation.

• Inference:

• From θ̂(xi ), Λ̂(xi ) get Ψ̂(yi , ti , xi ).

• µ̂ = 1
n

∑
i Ψ̂(yi , ti , xi )

• ˆAvar(µ̂) = 1
n

∑
i (Ψ̂(yi , ti , xi )− µ̂)2
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Deep Logit: Simulation Study I

For J = 1000, I generate images Mj(Jx3x1024x1024) from the MNIST

Digits dataset. I generate uij according to,

uij = log(1 + 0.1label(Mj)) + ϵij

where label gives the actual digit value of the image of the digit.

Figure 3: Product Images
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Deep Logit: Simulation Study II

I estimate model and check the average scores of ĝ(Mj) when

label(Mj) = j

uij = g(Mj) + ϵij

Figure 4: Product Images 79
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