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Trends



GitHub Developer Survey

Python is the second most popular programming language (by usage):
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GitHub Developer Survey

Python adoption continues to climb.
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Python Developer Survey

Uses of Python:

DevOps / System administration / Writing automation scripts

Programming of web parsers / scrapers / crawlers

Software testing / Writing automated tests

Embedded development

Multimedia applications development

51%/: Data anal

43%/. Web development
36% Machine learning
34%/
30%/

7%/ Educational purposes
25%.

20%/ Software prototyping
19%/ Desktop development
7%/ Network programming
13%/ Computer graphics
9%/ Game development
8%/

6%/ Mobile development
6%/

6%/ Other



Python Developer Survey

Python is mainly used by professionals.

Employment status

IEESSSSSSSSSSS———— 59% Fully bya 7
B 13%  Student
mm 7% Freelancer
mm 7% Self-employed
mm 7% Working student
BE 5% Partially employed by a company / organization
1% Retired

| 2%  Other



Python Developer Survey

Python is mainly used in information technology, education, and research.

Company industry

Information Technology / Software Development
Education / Training

Science

Accounting / Finance / Insurance

Medicine / Health

Manufacturing

Banking / Real Estate / Mortgage Financing



Python Developer Survey

Most Python users are newcomers.

Professional coding experience

33%
19% 19% 12% 16%
Less than1 1-2 years 3-5years 6-10 years 11+ years

year



Overview



Why Python?

Pros:

Free, Open Source

Easy to learn, write, read, debug

Mature package ecosystem

e Fast in development time
Cons:

e Slow execution due to Dynamic Types
e Sol: Type-Hints, Multithreading, Compilers (Cython, Numba, JAX)



Example - |

Vx € X, Vit1(x) < maxo<x<x [\/X —x" + /3\/,-(x’)}

# Packages
import numpy as np
import matplotlib.pyplot as plt

# Parameters and Arrays

beta = 0.95

grid = np.linspace(0.1, 1, 100)
v_old = np.sqrt(grid)

v_new = np.sqrt(grid)

# Value Function Iteration
for i in range(100):
for idx, cake in enumerate(grid):
v_new[idx] = np.max((np.sqrt(cake - grid) + beta * v_old) [grid <= cakel)
v_old[:] = v_new

# Plot

plt.plot(grid, v_old, label = 'Optimal Value Function')
plt.plot(grid, np.sqrt(grid), label = 'Utility Function')
plt.legend()

plt.show()



Example - |
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Example - I

# Packages
from statsmodels.sandbox.regression.gmm import IV2SLS
import pandas as pd

# Matrices
df = pd.read_csv('wage_data.csv')
Y = df[['lwage']]

X = df[['educ’, 'IQ', 'KwW', 'exper', 'tenure', ‘age', 'married', ‘'black', ‘'south', ‘'urban']]
Z = df[['IQ', 'KwWw', ‘'exper', 'tenure', 'age', 'married', 'black', 'south', 'urban', 'sibs', 'brthord', 'meduc', 'feduc']]

# Fit

X = sm.add_constant(X)

Z = sm.add_constant(Z)

IV2SLS = IV2SLS(Y, X, instrument = Z).fit()
print(IV2SLS.summary())
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Example - 1l

# Packages

import pyblp
import numpy as np
import pandas as pd

# Product Characteristics

product_char = pd.read_csv(pyblp.data.BLP_PRODUCTS_LOCATION)

product_char_spec = (pyblp.Formulation('l + hpwt + air + mpd + space'), # linear coeff
pyblp.Formulation('l + prices + hpwt + air + mpd + space'), # random coeff
pyblp.Formulation('1l + log(hpwt) + air + log(mpg) + log(space) + trend')) # cost coeff

# Demographics
demog = pd.read_csv(pyblp.data.BLP_AGENTS_LOCATION)
demog_spec = pyblp.Formulation('® + I(1 / income)"')

# Initialize

BLP1995 = pyblp.Problem(product_char_spec, product_char, demog_spec, demog, costs_type='log')
sigma@ = np.diag([3.612, @, 4.628, 1.818, 1.050, 2.056])

pi0 = np.c_[[0, -43.501, @, 0, 0, 0]

# Solve
results = BLP1995.solve(sigma®, pi@, costs_bounds=(0.001, None))
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General Packages

e Arrays and Data

numpy, pandas, dask

e Plots
matplotlib, seaborn

e Solvers
scipy, sympy, fenicsx
e Machine Learning

sklearn, lightgbm

e Deep Learning
torch, tensorflow, jax

Web-Scraping

requests, bs4, selenium
Text
nltk, spacy, huggingface

Bayesian
stan, pymc3

Multi-Agent

mesa, ray
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Econ-Spe Packages

e Econometrics e Time Series
statmodels, linearmodels, pyflux, darts, kats
pingouin, econml e Finance

e Industrial Org. vnpy, qlib, tf-quant-finance

pyBLP, torch-choice, nashpy e Structural Models

e Macroeconomics quantecon,
econpizza, sequence-jacobian OpenSourceEconomics,
econ-HARK
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Python Syntax




Installing Python

pip: Package Installation

e venv: Virtual Environments

How to use Python?

Command Line Interface (CLI)
Scripts

IDEs - Spyder, Visual Code Studio
Jupyter Notebooks

Cloud - Google Collab

14



e Variables and Assignment e Flow control
e Strings e Conditionals (if-elif-else)
e Int, Float e Loops (for, while)

e Data Structures e Break, Continue, Pass

Functions

e List

e Numpy Arrays Classes

e Pandas Dataframe

e Others: Dict, Tuple, Set o Comments
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e Common Errors e How to get help?
e Syntax Error e help()
e Runtime Error o ChatGPT

e Diagnosis e Stack Overflow

e Traceback e Package Documentation

e try-except

16



Project Files

A typical Python project:

README . md
LICENCE. txt
requirements. txt
main.py
utils.py
data/

data.csv
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Research with Al/ML




Backpropagation

PyTorch, TensorFlow, and JAX permit backpropagation through a
combination of arbitrary functions on data arrays.

e X is data array.
g(X;8)=p'X
e(Yiy)=e"
&(Z;7)=logrZ

g(X; B,v,7) = g3(&2(g1(X)))

i . dg dg dg
Backprop gives us: a5 d dr

e This allows us to tweak (3,7, 7) to increase g(X)

This enables the construction and solution of complex objective functions.
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High Dimensional Covariates

e Causal Inference with high dimensional X or Z.
o Yi=p8Ti+g(Xi;0)+ e
o Yi=g1(Xi;0)Ti + &(Xi;0) + €
o Chernozhukov et al 2018, Farrell et al 2021

e Discrete Choice with High Dimensional X:
o
€%k

k
o 0j=ap; +g(X;0) + &
e Quan and Williams 2021

.Sj:
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Solving Dynamic Models

e Using neural nets to represent decision rules:

e Neural Network: ¢ = g(ke; 0)

e Objective: J(0) = E. s, | >, Bu (ct)]

e Optimize 6 to maximize J(#) subject to constraints.
e Maliar et al 2021

e Maximum Likelihood Models:

® i :g(Xuel:é’)

o Plyilxi,0) = [ 1{}’: = g(xi, i 0)}dP(ei)

OMF = argmint 3", log P(yilxi, 0)

e if argmin step is infeasible, then we use gradient descent.
e Wei and Jiang 2021

e Can solve non-linear PDEs using deep learning (Duarte 2023).
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Hypothesis Generation

e When X— > Y mapping is used to generate an interesting
hypothesis.
e X: mugshot of prisioner
e Y: bail assignment
e D: numerical attributes
e Can X predict Y beyond what D can? If so, can we generate
hypothesis X’ and study its prediction of Y.
e Ludwig and Mullainathan (2023)
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Embeddings

e Latent Factors:

o Yi=[FxZi+e¢

e Z; is low dimensional representation of X;

e Obtained from a hidden-layers of a neural net s.t. W; = g(X;;0)

e Asset Pricing Factors (Gu et al., 2021), Demand for Fonts (Han et

al., 2021)

Output layer

Hidden layer(s)

Input layer
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Exogenous Shocks

e Monetary Policy Shocks:

o iy =g(Xe:0) + e

e We want to extract €; which represents shock uncorrelated to the
rest of the economy.

e Use any data (blue book, macro indicators, etc.) to construct X; to
predict i; using neural networks.

e The residual will necessarily be an “exogenous” shock.

e Aruoba and Drechsel (2022)
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Agent Learning

e Learning through Reinforcement

e Policies: a: = g(s¢; 0)

e Value function: V(s) = g(s; )
e Sample actions through trial and error and improve valuations.
e Momentum and Reversals in Artificial Stock Markets (Chiarella et al

2016, Maeda et al 2020).
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Market Design

e Myerson Auctions as a Deep Learning Problem

Valuations v ~ F, Bids b

Auction: Allocation g(b;6), Pricing p(b; v)

Maximize Exp Revenue: E,r [E, pi(b; 'y)}

Constraint: Vi, given v_;, E,, maxvi/(vi’ —pi)—(vi— p,-)} =0
Sample valuations v and find (6, ) that solves the empirical version
of the problem.

Optimal Auctions through Deep Learning (Dutting et al., 2023)
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Conclusion

What Al/ML can offer Economics beyond Prediction:

e Heterogenous Treatment Effects

¢ Handling High-Dimensional Covariates

e Dimensionality Reduction, Latent Factors

e Solving Theoretical Models - Macro, 10, Auctions, Finance
e Estimating Models with Data

e Extracting Exogenous Components

e Modelling Agent Learning

e Hypothesis Generation

Highlighted topics are especially useful in industry.
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